Training Wavelet Neural Networks Using Hybrid Particle Swarm Optimization and Gravitational Search Algorithm for System Identification
نویسندگان
چکیده
ystem identification is mainly the process of improving a mathematical modeling of a physical system using experimental data. In this paper, a new hybrid wavelet neural network is proposed for the system identification purposes. The Gravitational Search Algorithm (GSA) is a new evolutionary algorithm which recently introduced and has a good performance in different optimization problems. The GSA inspired by the law of gravity and mass interactions. The only disadvantage of GSA is that suffers from slow searching speed in the last iterations. In this paper the hybridization of the defined algorithms (GSAPSO) is proposed for constructing and training wavelet neural networks. The difference of the conventional neural network and wavelet neural network is that the activation function of the original WNN is based on wavelet transformation. This algorithm is based on the optimal selection of network weights dynamically during the training process. The suggested method determines the optimal value of the weights and solves the optimization problem of wavelet neural network structure. The problem of finding a good neural model is then discussed through solutions achieved by wavelet neural networks trained by PSO based and GSA based algorithms. Experimental results show that this method can improve the performance of the wavelet based neural network significantly.
منابع مشابه
Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملArtificial Intelligence Based Approach for Identification of Current Transformer Saturation from Faults in Power Transformers
Protection systems have vital role in network reliability in short circuit mode and proper operating for relays. Current transformer often in transient and saturation under short circuit mode causes mal-operation of relays which will have undesirable effects. Therefore, proper and quick identification of Current transformer saturation is so important. In this paper, an Artificial Neural Network...
متن کاملOptimization of grid independent diesel-based hybrid system for power generation using improved particle swarm optimization algorithm
The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents modeling and optimization of a photovoltaic (PV)/wind/diesel system with batteries storage for electrification to an off-grid remote area located in Rafsanjan, Iran. For this location, different hybrid systems are studied and ...
متن کاملآموزش شبکه عصبی MLP در فشردهسازی تصاویر با استفاده از روش GSA
Image compression is one of the important research fields in image processing. Up to now, different methods are presented for image compression. Neural network is one of these methods that has represented its good performance in many applications. The usual method in training of neural networks is error back propagation method that its drawbacks are late convergence and stopping in points of lo...
متن کاملTraining feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm
The Gravitational Search Algorithm (GSA) is a novel heuristic optimization method based on the law of gravity and mass interactions. It has been proven that this algorithm has good ability to search for the global optimum, but it suffers from slow searching speed in the last iterations. This work proposes a hybrid of Particle Swarm Optimization (PSO) and GSA to resolve the aforementioned proble...
متن کامل